如图1,点P是线段AB的中点,分别以AP和BP为边在线段AB的同侧作等边三角形APC和等边三角形BPD,连接CD,得

2025-06-22 19:30:41
推荐回答(1个)
回答1:

(1)四边形EFGH的形状是菱形;

(2)第一问的结论仍成立,即四边形EFGH为菱形,理由为:
连接AD,BC,如图2所示,
∵∠APC=∠BPD,
∴∠APC+∠CPD=∠BPD+∠CPD,即∠APD=∠CPB,
在△APD和△CPB中,
AP=CP
∠APD=∠CPB
PD=BP

∴△APD≌△CPB(SAS),
∴AD=BC,
在△ACD中,E为AC中点,H为CD中点,
∴EH为△ACD的中位线,
∴EH=
1
2
AD,EH AD,
同理PG=
1
2
AD,PG AD,HG=
1
2
AC,
∴EH=PG,EH PG,且EH=HG,
四边形EFGH为菱形;




(3)四边形EFGH为正方形,理由为:
连接AD,BC,如图3所示,
∵∠APC=∠BPD,
∴∠APC+∠CPD=∠BPD+∠CPD,即∠APD=∠CPB,
在△APD和△CPB中,
AP=CP
∠APD=∠CPB
PD=BP

∴△APD≌△CPB(SAS),
∴AD=BC,∠DAP=∠BCP,
在△ACD中,E为AC中点,H为CD中点,
∴EH为△ACD的中位线,
∴EH=
1
2
AD,EH AD,
同理PG=
1
2
FG,PG AD,HG=
1
2
AC,
∴EH=PG,EH PG,且EH=HG,
四边形EFGH为菱形,
又∠CMN=∠AMP,∠DAP=∠BCP,
∴△CMN △AMP,又∠APC=90°,
∴∠CNM=∠APC=90°,
∴四边形EFGH为正方形.
故答案为:正方形