答: 1)定义域A=[1.2] f(x)=x^2+2,1<=x^2<=4 所以:f(x)的值域为S=[3,6] 4<=4x=m^2+2 所以:m^2-4m+3<=0 所以:(m-1)(m-3)<=0 解得:1<=m<=3 3) f(x)=g(x) x^2+2=4x-1 x^2-4x+3=0 (x-1)(x-3)=0 x1=1或者x2=3 所以:A={1,3}