己知f(x)=4cos(3x一兀⼀6) 2b当xe[一兀⼀6,兀⼀6]时0<二fm<=6求f(X

2025-06-23 01:14:58
推荐回答(2个)
回答1:

f(x)=4cos(3x-π/6)+2b
x∈[-π/6,π/6]时0≤f(x)≤6
f'(x)=-12sin(3x-π/6)
驻点3x-π/6=0→x=π/18,在区间内
3x-π/6=±π→x=-5π/18,x=7π/18,均不在区间
f''(x)=-36cos(3x-π/6)
f''(π/18)<0
∴f''(π/18)=4+2b是最大值≤6 →b≤1 ①
f(-π/6)=-2+2b
f(π/6)=2+2b
∴最小值是f(-π/6)=-2+2b≥0→b≥1 ②
由①②
b=1
∴f(x)=4cos(3x-π/6)+2

回答2:

那2b是什么鬼…