1、两边都除以e^(x+y)得
(1-e^-y)dx+(1+e^-x)dy=0
(1-e^-y)dx=-(1+e^-x)dy
dx/(1+e^-x)=-dy/(1-e^-y)
e^xdx/(1+e^x)=-e^ydy/(e^y-1)
d(1+e^x)/(1+e^x)=-d(e^y-1)/(e^y-1)
两边分别积分得:
ln(1+e^x)=-ln|e^y-1|+C1
也即:
(1+e^x)|e^y-1)|=C2=e^C1
进而得:
y=ln[1±C/(1+e^x)]
2、典型的y'+P(x)*y=Q(x)的题。
“常数变易法”求解:.
∵由齐次方程dy/dx+P(x)y=0
==>dy/dx=-P(x)y
==>dy/y=-P(x)dx
==>ln│y│=-∫P(x)dx+ln│C│ (C是积分常数)
==>y=Ce^(-∫P(x)dx)
∴此齐次方程的通解是y=Ce^(-∫P(x)dx)
于是,根据常数变易法,设一阶线性微分方程dy/dx+P(x)y=Q(x)的解为
y=C(x)e^(-∫P(x)dx) (C(x)是关于x的函数)
代入dy/dx+P(x)y=Q(x),化简整理得
C'(x)e^(-∫P(x)dx)=Q(x)
==>C'(x)=Q(x)e^(∫P(x)dx)
==>C(x)=∫Q(x)e^(∫P(x)dx)dx+C (C是积分常数)
==>y=C(x)e^(-∫P(x)dx)=[∫Q(x)e^(∫P(x)dx)dx+C]e^(-∫P(x)dx)
故一阶线性微分方程dy/dx+P(x)y=Q(x)的通解公式是
y=[∫Q(x)e^(∫P(x)dx)dx+C]e^(-∫P(x)dx) (C是积分常数).
在此,∫P(x)dx=∫cosxdx=sinx
∫Q(x)e^(∫P(x)dx)dx=∫e^(-sinx)*e^sinxdx=x
故通解为:
y=(x+C)*e^(-sinx)
求啥?