令t=3+2*sinx∈[1,5]、f(t)在【1,,5】上递减,所以f(t)最大为f(1)=4m>4
∵3+2sinx∈[1,5]∴f(x)=-x^3+3x+2f'﹙x﹚=-3x²+3=-3﹙x+1﹚﹙x-1﹚∴x∈[1,5]时f'﹙x﹚≤0∴f﹙x﹚=-x^3+3x+2,x∈[1,5]是减函数∴f﹙1﹚<m即-1+3+2<m∴m>4