已知函数f(x)=sinx+sin(x+π⼀2),x∈R,fx莫最大值是?最小值是?

??最小周期是多少?
2025-06-22 21:45:17
推荐回答(3个)
回答1:

f(x)=sinx+sin(x+π/2)
=sinx-cosx
=√2(sinxcosπ/4-cosxsinπ/4)
=√2sin(x-π/4)
所以,易得f(x)最大值是√2,最小值是-√2
最小正周期为:2π

回答2:

f(x)=sinx+sin(x+π/2)
=sinx+cosx
=√2(√2/2sinx+√2/2cosx)
=√2sin(x+π/4)
所以f(x)的最大值是 +√2,最小值是 -√2 。
周期是 2π

回答3:

f(x)=sinx+sin(x+π/2),
=sinx+sin[π/2-(-x)]
=sinx+cos(-x)
=sinx+cosx
=√2sin(x+π/4)
所以最大值为√2 最小值为-√2