证明两个整数a.b互质的充分必要条件是,存在两个整数s.t满足条件as+bt=1

2025-06-22 16:33:14
推荐回答(2个)
回答1:

充分性:因为as+bt=1,设c=(a,b),则c整除a和b,所以c整除as+bt,即c整除1,所以c=1,即a和b互质

必要性:因为a和b互质,所以(a,b)=1。

以下是充分必要条件的相关介绍:

充分必要条件也即充要条件,意思是说,如果能从命题p推出命题q,而且也能从命题q推出命题p ,则称p是q的充分必要条件,且q也是p的充分必要条件。

如果有事物情况A,则必然有事物情况B;如果有事物情况B,则必然有事物情况A,那么B就是A的充分必要条件 ( 简称:充要条件 ),反之亦然 。

生活中表达充分必要条件的情况不太常见。在逻辑学和数学中一般用“当且仅当”来表示充分必要条件。例如:当且仅当竞争对手甲退出投标时,乙才会报一个较高的价位。a、b为任意实数时,a²+b² ≥ 2ab 成立,当且仅当a=b时取等号。

以上资料参考百度百科——充分必要条件

回答2:

证明:1)充分性:因为as+bt=1,设c=(a,b),则c整除a和b,所以c整除as+bt,即c整除1,所以c=1,即a和b互质
2)必要性:因为a和b互质,所以(a,b)=1。
考虑非空集合A={as+bt│s,t为任意整数},不妨设a0是A中最小正整数且a0=as0+bt0,y是A中任意一个元素,由带余除法y=as+bt=q(as0+bt0)+r,0<=r