使用python算法如何解

2025-06-22 20:57:14
推荐回答(1个)
回答1:

 解决方案

  从一些测试案例开始总是好的做法。让我们从小的案例开始,看看能否找到某种规律。

  . N = 1,1种爬楼方式:[1]

  . N = 2,2种爬楼方式:[1,1],[2]

  . N = 3,3种爬楼方式:[1,2],[1,1,1],[2,1]

  . N = 4,5种爬楼方式:[1,1,2],[2,2],[1,2,1],[1,1,1,1],[2,1,1]

  你有没有注意到什么?请看N = 3时,爬完3阶楼梯的方法数量是3,基于N = 1和N = 2。存在什么关系?

  爬完N = 3的两种方法是首先达到N = 1,然后再往上爬2步,或达到N = 2再向上爬1步。所以 f(3) = f(2) + f(1)。

  这对N = 4是否成立呢?是的,这也是成立的。因为我们只能在达到第三个台阶然后再爬一步,或者在到了第二个台阶之后再爬两步这两种方式爬完4个台阶。所以f(4) = f(3) + f(2)。

  所以关系如下: f(n) = f(n – 1) + f(n – 2),且f(1) = 1和f(2) = 2。这就是斐波那契数列。

  def fibonacci(n):

  if n <= 1:

  return 1

  return fibonacci(n - 1) + fibonacci(n - 2)

  当然,这很慢(O(2^N))——我们要做很多重复的计算!通过迭代计算,我们可以更快:

  def fibonacci(n):

  a, b = 1, 2

  for _ in range(n - 1):

  a, b = b, a + b

  return a

  现在,让我们尝试概括我们学到的东西,看看是否可以应用到从集合X中取步数这个要求下的爬楼梯。类似的推理告诉我们,如果X = {1,3,5},那么我们的算法应该是f(n) = f(n – 1) + f(n – 3) + f(n – 5)。如果n<0,那么我们应该返回0,因为我们不能爬负数。

  def staircase(n, X):

  if n < 0:

  return 0

  elif n == 0:

  return 1

  elif n in X:

  return 1 + sum(staircase(n - x, X) for x in X if x < n)

  else:

  return sum(staircase(n - x, X) for x in X if x < n)

  这也很慢(O(|X|^N)),因为也重复计算了。我们可以使用动态编程来加快速度。

  每次的输入cache[i]将包含我们可以用集合X到达台阶i的方法的数量。然后,我们将使用与之前相同的递归从零开始构建数组:

  def staircase(n, X):

  cache = [0 for _ in range(n + 1)]

  cache[0] = 1

  for i in range(n + 1):

  cache[i] += sum(cache[i - x] for x in X if i - x > 0)

  cache[i] += 1 if i in X else 0

  return cache[-1]

  现在时间复杂度为O(N * |X|),空间复杂度为O(N)。