点击放大:
(稍等即可,已经上传)
∫(sinx*cosx)/(sin^4 + cos^4)
= ∫sinx*d(sinx)/[sin^4+(1-sin^2)^2]
= (1/2)*∫d(sin^2)/[2*sin^4-2*sin^2+1]
令sin^2=t
原式=(1/2)* ∫(2*t^2-2t+1)dt
=(1/2)*[(2/3)t^3-t^2+t+C]
将sin^2=t带入上式:
原式=(1/2)*[(2/3)sin^6-sin^4+sin^2+C]
其中C为任意常数