A=1/π(2)1/2(3)1/2+arctanx,x属于(-π/2,π/2)
当m=2时,f(x)=x3+x2+3x
∴f′(x)=-x2+2x+3
故k=f′(3)=0,
又∵f(3)=9
所以曲线y=f(x)在点(3,f(3))处的切线方程为:y=9;
(2)∵f′(x)=-x2+2x+m2-1,
令f′(x)=0,解得x=1-m或x=1+m,因为m>0,所以1+m>1-m,
当x变化时,f′(x)、f(x)的变化情况:
∴f(x)在(-∞,1-m),(1+m,+∞)内是减函数,在(1-m,1+m)内是增函数,
∴函数f(x)在x=1-m处取得极小值f(1-m),且f(1?m)=?
扩展资料:
线性变换及其所对应的对称,在现代物理学中有着重要的角色。例如,在量子场论中,基本粒子是由狭义相对论的洛伦兹群所表示,具体来说,即它们在旋量群下的表现。内含泡利矩阵及更通用的狄拉克矩阵的具体表示,在费米子的物理描述中,是一项不可或缺的构成部分,而费米子的表现可以用旋量来表述。
描述最轻的三种夸克时,需要用到一种内含特殊酉群SU(3)的群论表示;物理学家在计算时会用一种更简便的矩阵表示,叫盖尔曼矩阵,这种矩阵也被用作SU(3)规范群,而强核力的现代描述──量子色动力学的基础正是SU(3)。
参考资料来源;百度百科-矩阵