运用构造法解决1^2+2^2+3^2+......+n^2
的问题:
n^2=n(n+1)-n
1^2+2^2+3^2+......+n^2
=1*2-1+2*3-2+....+n(n+1)-n
=1*2+2*3+...+n(n+1)-(1+2+...+n)
由于n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]/3
所以1*2+2*3+...+n(n+1)
=[1*2*3-0+2*3*4-1*2*3+....+n(n+1)(n+2)-(n-1)n(n+1)]/3
[前后消项]
=[n(n+1)(n+2)]/3
所以1^2+2^2+3^2+......+n^2
=[n(n+1)(n+2)]/3-[n(n+1)]/2
=n(n+1)[(n+2)/3-1/2]
=n(n+1)[(2n+1)/6]
=n(n+1)(2n+1)/6
则 1²+2²+3²+-------+20²=20*21*41/6=2870
2870/4 =717余2
由平方和公式可算
1^2+2^2+……+20^2=20*(20+1)(2*20+1)
除以4余0
和为2870
余数2
1²+2²+3²+-------+20²=1/6*20*21*41=2870
2870/4=717----2