解:作PD⊥BC于D,PE⊥AC于E,如图,AP=
t,BQ=tcm,(0≤t<6)
2
∵∠C=90°,AC=BC=6cm,
∴△ABC为直角三角形,
∴∠A=∠B=45°,
∴△APE和△PBD为等腰直角三角形,
∴PE=AE=
AP=tcm,BD=PD,
2
2
∴CE=AC-AE=(6-t)cm,
∵四边形PECD为矩形,
∴PD=EC=(6-t)cm,
∴BD=(6-t)cm,
∴QD=BD-BQ=(6-2t)cm,
在Rt△PCE中,PC2=PE2+CE2=t2+(6-t)2,
在Rt△PDQ中,PQ2=PD2+DQ2=(6-t)2+(6-2t)2,
∵四边形QPCP′为菱形,
∴PQ=PC,
∴t2+(6-t)2=(6-t)2+(6-2t)2,
∴t1=2,t2=6(舍去),
∴t的值为2.
故答案为:2.