(1)
Sn = kn^2+n
n=1,
a1= k+1
an = Sn - S(n-1)
= k(2n-1) +1 (1)
a1=k+1 satisfy (1)
ie
an = k(2n-1) +1
(2)
am, a(2m), a(4m)成等比数列
am.a(4m) = [a(2m)]^2
m=1
a1.a4 =(a2)^2
(k+1)(7k+1) = (3k+1)^2
7k^2+8k+1 = 9k^2 +6k+1
2k^2-2k=0
k= 0 or 1
(1)n=1代入Sn的通项得,a1=S1=k+1
当n≥2时,an=Sn-S(n-1)=kn²+n-[k(n-1)²+n-1]=k(2n-1)+1=2nk-k+1
显然n=1也符合上式,所以an=2nk-k+1
(2)am=2mk-k+1,a2m=4mk-k+1,a4m=8mk-k+1
因为这三个数成等比数列,所以(4mk-k+1)²=(2mk-k+1)(8mk-k+1)
即8mk(1-k)=10mk(1-k)
又因为m不等于0,∴8k(1-k)=10k(1-k),
∴k=0或1.