证明:将△DBM以D为旋转中心顺时针旋转120度,使BD与CD重合得到△DBM′
△DBM≌△DBM′
∵∠BDC=120°BD=CD,∴∠BCD=∠CBD=30°
∴∠DBM=∠DCN=30°+60°=90°∴∠DBM′+∠DCM=180°。N、C、M′在一条直线上。DNM′是三角形
∠NDM′=∠NDC+∠CDM′=∠NDC+∠BDM=∠BDC-∠NDM=60°=∠NDM
在△NDM和△NDM′中
DM=DM′,∠NDM=∠NDM′,DN=DN
∴△NDM≌△NDM′,NM=NM′
△AMN周长为AM+AN+NM=AM+AN+NM′=AM+AN+CN+BM=AB+AC=2