(1)∵an=3an-1+3n-1 (n≥2),且a3=95.
∴95=3a2+33-1,
解得a2=23.
23=3a1+32-1,
解得a1=5.
∴a1=5,a2=23. (2分)
(2)bn=
(an+t)为等差数列,必须b1=1 3n
(t+5),b2=1 3
(t+23),b3=1 9
(t+95)成等差数列,1 27
得t=?
. (5分),1 2
即bn=
(an?1 3n
),当n=1,2,3成等差.1 2
下证此时bn对一切n∈Z+定成等差数列.bn?bn?1=
(an?1 3n
)?1 2
(an?1?1 3n?1
)=1 2
(3an?1+3n?1 3n
)?3 2
(an?1?1 3n?1
)=11 2
∴当t=?
时,{bn}是公差为1的等差数列. (8分)1 2
(3)b1=
(5?1 3
)=1 2
,3 2
∴bn=
. (10分)2n+1 2
由an=3n?bn?t=
[(2n+1)?3n+1](12分)1 2
记Sn=
n i=1