解:依题意有1-tanx≥0且tan(x+π/6)≠0分开解对于1-tanx≥0,即tanx≤1,(因为tanx的定义域是(kπ-π/2,kπ+π/2),k∈z)所以(kπ-π/2,kπ+π/4],k∈z①对于tan(x+π/6)≠0,有kπ-π/2(kπ-2/3π,kπ-1/6π)∪(kπ-1/6π,kπ+1/3π),k∈z②原函数的定义域就是①与②的交集所以原函数的定义域为(kπ-π/2,kπ-1/6π)∪(kπ-1/6π,kπ+π/4],k∈z