解:(1)作点A关于MN的对称点A′,连接A′B,交MN于点P,则PA+PB最小,
连接OA′,AA′.
∵点A与A′关于MN对称,点A是半圆上的一个三等分点,
∴∠A′ON=∠AON=60°,PA=PA′,
∵点B是弧AN^的中点,
∴∠BON=30°,
∴∠A′OB=∠A′ON+∠BON=90°,
又∵OA=OA′=2,
∴A′B=2
.
2
∴PA+PB=PA′+PB=A′B=2
.
2
(2)连接AO,BO,AB,过点A作AN⊥OB,
∵CD是⊙O的直径,点A是半圆上的三等分点,B是弧AD的中点,CD=4,
∴∠AOB=30°,AN=
AO=1,1 2
∴ON=
,BN=2-
3
,
3
∴AP-BP最大值=AB=
=2
12+(2?
)2
3
2?