已知圆C过点P(1,1)且与圆M:(x+2)2+(y+2)2=r2(r>0)关于直线x+y+2=0对称,作斜率为1的直线l与圆

2025-06-23 07:24:30
推荐回答(1个)
回答1:

(1)设圆心C(a,b),由题意得到圆M坐标为(-2,-2),
又圆C与圆M关于直线x+y+2=0对称,

a?2
2
+
b?2
2
+2=0①,…(2分)
又直线x+y+2=0的斜率为-1,
∴直线CM的斜率为1,即
b+2
a+2
=1②,
联立①②解得:a=b=0,
∴圆心C坐标为(0,0),又P(1,1)在圆C上,
半径r2=(0-1)2+(0-1)2=2,
∴圆C的方程为x2+y2=2…(4分)
(2)设直线AB的方程为:y=x+m,A(x1,y1),B(x2,y2),
x2+y2=2
y=x+m
,消去y得:2x2+2mx+m2-2=0,
∴x1+x2=-m,x1x2=
m2?2
2

∴kPA+kPB=
y1?1
x1?1
+
y2?1
x2?1
=
x1?1+m
x1?1
+
x2?1+m
x2?1

=2+
m
x1?1
+
m
x2?1
=2+
m(x1+x2?2)
x1x2?(x1+x2)+1

=2+
m(?m?2)
m2?2
2
+m+1
=2?